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INTRODUCTION

In this report, we consider the Fixed Satellite Service (FSS)
system synthesis problem, which can be described as follows:
Communications satellites are to be positioned 1in the geostationary
orbit and are to be assigned frequencies for transmitting signals to
their intended service areas. The primary goal is to assign locations
and frequencies to the satellites so that interference does not exceed
a specified acceptable level. Other possible goals or objectives are:
conservation of the geostationary orbit via minimization of the
orbital arc occupied by the satellites in question, or positioning the
satellites as closely as possible to specified "desired" locations.

Our primary purpose is to suggest alternative mathematical
programming formulations of satellite system synthesis problems in
this report. We present in detail mixed integer programming and
almost linear programming formulations for each of two objectives:
(1) positioning satellites as closely as possible to specified
"desired" locations, and (2) minimizing the total 1length of the
geostationary arc allocated to the satellites to be positioned. We
report computational results for four test problems with this first
objective. We also 1list additional possible objectives and review
other satellite system synthesis models. Any of the models suggested
in this paper can be modified to accommodate pre-existing satellite

systems.



Space communications, and particularly FSS allotments, are to be
addressed at the World Administrative Radio Conference to be held in
1988 (WARC-88). We think that optimization models, such as the ones
we suggest herein, will be aids in the complex decision-making process

that lies ahead for the WARC-88 delegates.

LITERATURE REVIEW

Mathematical programming formulations of satellite system
synthesis problems have already received attention in the literature.
Some of the approaches we discuss were originally intended for
Broadcasting Satellite Service (BSS) system synthesis. We think that
these approaches, with Timited modifications, are applicable to FSS
system synthesis problems as well.

Many approaches suggested have considered only the frequency
aspect of the problem. For example, Cameron proposed an integer
programming formulation that assigns one channel to each service area
by solving a sequence of set covering problems [2]. The approach in
this model is to conserve the spectrum by minimizing the number of
channels needed, while enforcing constraints on co-channel
interference. Levis, Martin, Wang, and Gonsalvez [8] present two
integer programming formulations of the same frequency assignment
problem. They also suggest an integer programming formulation that

considers the assignment of multiple channels to a single service area




and takes into account adjacent-channel interference. The objective
in their formulation is to minimize the bandwidth utilized. Baybars
[1] has also suggested an integer programming model that seeks to
minimize the number of channels used while considering both co-channel
and adjacent-channel interference.

Ito, Mizuno, and Muratani have formulated a satellite system
synthesis model that considers the assignment of only satellite
locations [7]. Their model is a nonlinear program, which they suggest
solving via the sequential unconstrained minimization technique. The
objective is to minimize the total length of the orbital arc allocated
to the satellites to be positioned; restrictions on single-entry and
aggregate inter-system interference are enforced. Their model is
"evolutional™: a 1launch sequence of the satellites to be positioned
is specified a priori; satellites are then added according to the
assumed Tlaunch sequence. The problem is easier to solve because of
its evolutional nature; however, completed solutions may be
suboptimal.

A nonlinear programming formulation that seeks to specify the
assignment of both 1locations and frequencies has been suggested by
Levis, Martin, Gonsalvez, and Wang [9] for the problem of synthesizing
satellite systems 1in the Broadcasting Satellite Service (BSS). This
model is formulated with the intention of maximizing the minimum
aggregate carrier-to-interference (C/I) ratio over all given test
points for the down-link. Assigned 1locations and frequencies are

restricted to being within specified bounds. Levis, Martin,




Gonsalvez, and Wang [9] and Martin et al. [11] recommend solving this
model with an extended gradient search procedure. Reilly, Levis, et
al. [15] have implemented a cyclic coordinate search procedure to
solve this same model. At best, these search procedures are heuristic
methods for solving synthesis problems. Reilly, Mount-Campbell, et
al. [16] describe an extensive experiment conducted to assess the
performance of these search methods on a small test problem. Their
findings indicate that the cyclic coordinate method consistently finds
better synthesis solutions at the expense of greater computing time.

Other heuristic procedures have been suggested for satellite
system synthesis problems. For example, Chouinard and Vachon describe
an enumerative method for making channel and polarization assignments,
given fixed orbital positions for the satellites being considered [3].
Nedzela and Sidney have developed two algorithms for assigning
locations, channels, and polarizations to satellite systems [12]. 1In
these algorithms, one satellite is selected for location, channel, and
polarization assignments at a time. This satellite is selected
because it has the least remaining "freedom" for assignments among the
satellites yet to be selected. An interactive method for assigning
locations, channels, and polarizations 1is described by Christensen
[4].

Ottey, Sullivan, and Zusman [13] suggest several objectives
related to interference for mathematical programming formulations of

satellite synthesis problems.




The synthesis models we present in this report differ from others
we have mentioned in that we make no assumptions about a Taunch
sequence or about fixed orbital positions as other authors have done.
We do not equate topocentric and geocentric angles as Ito, Mizuno, and
Muratani did [7]. These new models are extensions of models suggested
by Reilly, Levis, et al. [15], Levis, Wang, et al. [10], and Wang
[18]. Finally, we also suggest five possible objectives that we think

have not appeared in the open literature before.

MINIMUM SATELLITE SEPARATIONS

The formulations described below rely on the existence of a known
required minimum separation, measured in degrees of geostationary
orbital arc, for each pair of satellites. As far as the models and
solution methods discussed here are concerned, these separation values
might be selected arbitrarily, e.g., a uniform 20 separation or
separations fixed by international agreement; however, values that
relate more directly to the achievement of acceptable inter-system
interference can be incorporated as well.

In our experimental work, we have used separations calculated
w{th a computerized procedure developed by Wang [18] for determining
the required minimum orbital separation between two satellites, with

elliptical-beam antennas, needed to assure that single-entry

co-channel C/I ratios at assumed ground stations (test points) along




the boundaries of the areas served by the satellites are at least
equal to some threshold, for example, 30 dB. This required separation
varies as the mean position of the satellites changes, but the
variation appears to be small for at least some practical scenarios.
Wang therefore suggests that all feasible orbital 1locations be
considered when calculating the required minimum separation values,
and that the maximium of these for each satellite pair over the
allowable range of orbit positions be wused in satellite system
synthesis models. This was done in the examples shown later in this
report. Interested readers are directed to Wang [18], Levis, Wang, et
al. [10], and Reilly, Levis, et al. [15] for a more complete
treatment of this separation concept; also see Yamamura and Levis
[19] for similar work regarding satellites with circular-beam
antennas.

Other models for satellite system synthesis have used similar
separation concepts. For example, an extension of the model developed
by Ito, Mizuno, and Muratani [7], which is described in [17], uses a
spacing matrix of satellite separation values calculated to guarantee
that single-entry interference requirements will be met. The spacing
values are computed, given the current locations of the satellites
already positioned. Christensen [4] describes separation values that
are calculated assuming that the required separation between two
satellites is approximately constant regardless of the positions of

the satellites on the orbital arc.




Wang's separation values were used in the test problems we
present. As stated earlier, the primary goal in satellite synthesis
models is to prevent excessive interference. The aggregate
interference at each test point, i.e., the interfernce due to all
unwanted satellite signals, is the quantity of concern; but the
minimum pairwise separations recommended by Wang correspond to
single-entry interference caused by one satellite at a time at each
test point. In practice, it is found that the aggregate interference
requirement can by satisfied by imposing a more stringent requirement,
typically an additional 5 dB, on the single-entry interferences. As
an example, suppose we require aggregate C/I ratios of at least 25 dB.
Appropriate satellite separations might be calculated assuming a
single-entry co-channel protection ratio of about 30 dB. Such a
procedure was adopted for WARC-77 [5] and has proved valid in our test
problems, as demonstrated below.

The significance of the minimum separation concept is that we
avoid, in the optimization, the cumbersome expressions for
interference that others such as Ito, Mizuno, and Muratani [7], Levis,
Martin, Gonsalvez, and Wang [9], Martin et al. [11], and Reilly,
Mount-Campbell, et al. [16] have used previously. In the place of
these expressions, we use a conservative constant separation value for
each pair of satellites, equal to the largest of the separation values
calculated over the satellites' feasible orbital arcs, as recommended
by Wang [18]. 1In effect, the problem has been separated into two
parts: first, the calculation of separations based on interference

7




requirements, and then the optimization of the satellite orbit

positions, subject to the separation constraints.

MIXED INTEGER PROGRAMMING FORMULATION

Using the minimum satellite separation values described above, we
can formulate the FSS satellite system synthesis problem as a mixed
integer program (MIP). A branch-and-bound algorithm can be used to
solve this model for a global optimum. However, most integer
programming problems are among the most computationally difficult
optimization problems to solve. Solution times tend to increase
dramatically with increases in the number of decision variables that
are restricted to integer values; 1in fact, solution times may grow
exponentially as the number of discrete-valued variables increases
linearly. Therefore, in practice, the usefulness of this formulation
for solving 1large synthesis problems to optimality is suspect.
However, attractive feasible solutions are 1likely to be found by
terminating the branch-and-bound solution procedure prematurely, for
example, after a specified number of solutions is examined.

Before presenting the MIP formulation, we state our assumptions
and define our parameters and decision variables.

Assumptions:

1. Easternmost and westernmost feasible locations are given

for each satellite. Issues such as minimum elevation




angle and rain attenuation may be considered in setting
these location limits.

2. Minimum required separations are known for all pairs of
satellites. These may be established empirically, or they
may have been calculated from the interference
requirements with suitable frequency and polarization
assumptions.

3. An desired location is specified for each satellite.

4, The objective is to minimize the sum of the absolute
deviations of the satellites' prescribed locations from
their desired locations.

Parameters:

ej, Wj = easternmost or westernmost feasible location for

satellite j in degrees west longitude.

e =min {ej} , w =max {w;} .

dj = desired location for satellite j in degrees west
longitude.
Asij = minimum required separation between satellites i

and j in degrees longitude.

Decision Variables:
Xj = relative location (degrees west of ej in degrees

west longitude) of satellite j.




+
Xj, Xj = degrees west(+) or east(-) of its desired location
that satellite j is located.
xjj = 1 if satellite i is located west of satellite j

0 otherwise

The FSS satellite synthesis problem can now be formulated as a

mixed integer program as follows:

. » + -
Minimize z = ] (xj+xj) (1)
J
. + - 3
Subject to Xj-Xj*xj = dj-ej for all j (2)
xj=xj*(e-w-Asjj)xjj > e-w-ej+e;j for all i,j
where 1i<j (3)

-x1+xj-(e-w-Asij)xij > Asjjtei-ej for all i,j

where i<j (4)
Xj < Wj-ej for all j (5)
+ — -
Xj sXj 2Xj 2 0 for all j (6)
xi: € {0,1} for all i,j
” where i<j (7)

The objective function (1) totals all of the absolute deviations

of the prescribed satellite locations from the corresponding desired
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locations. The deviations themselves are measured in the first set of
constraints (2). Constraints of type (5) ensure that feasible
locations, those that permit the illumination of each satellite's
service area(s), are selected for all satellites. These constraints
should be enforced as simple bounds rather than as explicit structural
constraints. Nonnegativity of continuous variables and integrality of
binary variables are enforced by constraint sets (6) and (7),
respectively.

Constraints (3) and (4) require special explanation. For each
pair of satellites i and j, exactly one of the constraints of types
(3) and (4) will be redundant. The one that 1is redundant is
determined by whether satellite i is located west of satellite j, or
vice versa. The nonredundant constraint enforces the required
separation between satellites i and j. (These constraints are an
example of dichotomous or "either-or" constraints which are commonly
used to model necessary logical relationships in integer programming
applications.) If xjj = 1, that is, if satellite i is located west of

satellite j, (3) and (4) reduce to:

(x5 + ej) - (xj +e5) > Bsyj (3a)

- (xj +eg) +(xj+e5)> e-w (4a)

Constraint (4a) would be redundant in this case. The constant (e-w)
which appears in (4a) 1is the additive inverse of the length of the

entire arc segment being considered; hence, (4a) can never be
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violated. The required satellite separation would be enforced by
constraint (3a). If xjj = 0, the constants on the right-hand sides of
(3a) and (4a) would be interchanged. Constraint (4a) would enforce

the required satellite separation and (3a) would be redundant.

At most one of the variables x; and X} should be positive at a
solution. Fortunately, this is guaranteed by the simplex method for
linear programming that would be used to solve 1linear programming
subproblems during the execution of branch-and-bound procedures. To
illustrate the meaning of x; and i}, consider a satellite j, with a
desired Tlocation of, say, dj = 7504 and an easternmost feasible

+ —
location of, say, ey = 650W, the values of Xjs Xjs and Xj that

correspond to three different 1locations of satellite j are shown

below:
- + —
Location Xj Xj Xj
7004 5 0 5
7504 10 0 0
810y 16 6 0

At optima] solutions, x;, which can never be negative, will be
positive if and only if the location prescribed for satellite j is
west of its desired location. Similarly, i}, which can also never be
negative, will be positive if and only if the optimal location for
satellite j is east of its desired location. One may recognize that
values other than those given above for xg and X} are feasible.
Consider the case when satellite j 1is 1located at 819, then for

12




example, x; = 13 and x3'= 7 are also feasible, while not satisfying
the condition that only one can be positive. However, these other
sets of values for the variables will result in a less desirable
objective function value. At an optimal solution, at least one of the
variables x; and xj will have value zero.

In this formulation, we have been able to include two of the
objectives which were mentioned in the introduction. First of all,
interference is kept in check through the enforcement of constraint
sets (3) and (4). Secondly, the objective function (1) favors
synthesis solutions 1in which the satellites collectively assume
positions near their desired locations.

Solution times for mathematical programming models are dependent
upon the number of constraints and the number of variables included in
the model. Suppose we wish to solve a synthesis problem in which
there are m satellites. In this case, our formulation will have mZ+m
structural constraints (2), (3), and (4), 3m continuous variables, and
m(m-1)/2 binary variables. For m=100, we will have 4950 binary
variables. Without question, a synthesis problem of this magnitude
would be difficult to solve unless an efficient special-purpose
solution procedure were developed. One possible approach is to
decompose a large problem into smaller problems that are considerably
easier to solve; the solutions to the smaller problems would then bhe

combined to yield a complete, but perhaps suboptimal, solution.
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We present another model for the same synthesis problem in the
next section. In this second model, we employ only continuous
variables. While we are not certain to find a global optimum when we
use this second formulation, we expect considerably shorter computing

times, especially for synthesis problems with 100 or more satellites.

ALMOST LINEAR PROGRAMMING FORMULATION

Linear programming problems are among the most readily solvable
optimization problems. Solution times tend to grow slowly as the
number of decision variables is increased. Increases in the number of
structural constraints typically produce polynomial 1increases in
solution times. It would be a distinct advantage if we were able to
formulate satellite synthesis problems as linear programs. Below, we
describe a formulation which is nearly a linear program. The 1logical
relationships which we enforced with binary variables in the
formulation of the previous section can not be modeled exclusively
with 1linear functions of continuous variables. If we are willing to
model these logical relationships with nonlinear functions which we
will enforce in a manner different from that used to enforce the
remaining linear constraints, we may use the essential elements of the
simplex method for 1linear programming to find solutions to the
synthesis problem,

We first define new continuous variables for this formulation:

14



Pijs Njj = degrees west or east of satellite j that

satellite i is located

Our almost linear programming (ALP) formulation is:

+

Mininize z = ] (xj+x3) (8)
J
. + e 3
Subject to Xj-Xj+xj = dj-e; for all j (9)
Xj=Xj=Pjitnij = ei-ejy for all i,j
AL where i<j " (10)
Pis + Nii > AS§j for all i,j
! J ! where i<j  (11)
Xj < Wi-ej for all j (12)
+ -— )
Xj sXj »Xj > 0 for all j (13)
Pii sNj3 > O for all i,j
Y J where i<j (14)
pij*nij =0 for all 1,j

where i<j  (15)

The objective function (8) and the constraints of types (9),

(12), and (13) are identical to, and serve the same purposes as, their

counterparts in the mixed integer programming formulation. The
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absolute distance between satellites i and j is measured by the sum of
nij and pjj in constraints (10). In the constraints of type (11), we
guarantee that these distances are at least equal to the corresponding
minimum separations. Nonnegativity restrictions on the new variables
are enforced by constraints (14). The nonlinear constraints of type
(15) serve an important purpose. A satellite can not be located both
east and west of another satellite; it is necessary to include these
constraints, as no others preclude a solution suggesting such a
physical impossibility. These complementarity constraints require
that at least one of the variables pjj and njj must have value zero,
for each pair of satellites.

Were it not for the complementarity constraints (15), this model
could be solved using the simplex method for linear programming. With
a slight modification in the simplex procedure, we have a heuristic
algorithm to solve the problem formulated above. This modified
algorithm is called the simplex method with restricted basis entry
(RBE) [6,14]. The solutions found to satellite synthesis problems
with this procedure may not be global optima.

This formulation has m2+2m continuous variables and  m2+m
constraints, where m is the number of satellites. Although this model
is really no smaller than the mixed integer progamming model, it is
expected that substantially less computing time will be needed to find
solutions, especially when the number of satellites 1is 1large. The

absence of discrete-valued variables may be a significant advantage,
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particularly when solving problems with a 1large value of m.
Furthermore, heuristic approaches, such as the simplex method with RBE
in this case, tend to find better approximate solutions as problem
size increases.

In the next section, we suggest additional synthesis formulations
which consider the minimization of the length of the orbital arc

occupied by the satellites we seek to position.

MINIMUM ORBITAL ARC UTILIZATION AS AN OBJECTIVE

The objective of locating satellites as near as possible to
specified desired locations is a reasonable goal. However, it is not
the only viable objective. The geostationary orbit is a limited
natural resource, and it is 1likely that the demand for satellite
positions in this orbit will continue to increase. In order to
accommodate requests for additional satellite positions in the future,
a reasonable alternative objective would be to minimize the length of
the orbital arc occupied by the satellites to be positioned. With
some modification, our mathematical programming formulations can
accommodate this new objective. Assumptions (3) and (4), from our
eariier formulations, are now relaxed in the formulations that seek to
minimize the length of the occupied orbital arc.

Two new variables are needed for the formulations that consider

the utilization of the orbital arc:
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xg = dummy satellite location at the eastern edge of the
occupied arc, equal to the location of the eastern-
most satellite.

xm+1 = dummy satellite location at the western edge of the
occupied arc, equal to the location of the western-

most satelllite.

The new MIP formulation is:

Minimize z = xp+1-XQ

Subject to
xi-xj+(e-w-Asij)xij > e-w-ejtej for al! } <i,j <m
where i<j
-xj+xj+(e-w-4sij)xjj > Asjjtej-ej for all 1 <i,j <m
where i<j
Xo - Xj < ej fOf‘ j=1,2,.oo,m
Xm+1 - Xj > ej fOF j=1,2,ooo,m
Xj € Wj-ej for j=1,2,...,m
Xj > 0 for j=0,1,...,m+1
xij €{0,1} for all 1 <i,j <m
where i<j

18
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The objective function (16) seeks to minimize the distance
between the dummy satellite locations xg and xm+1, which is the length
of the arc occupied by the satellites to be positioned. Constraint
types (17) and (18) enforce the minimum satellite separation
requirements to maintain interference at an acceptable level.
Constraint sets (19) and (20) force xg and xp+1 to assume values
which differ by at least as much as the greatest separation between
any two satellites. The locations prescribed for the satellites are
restricted to feasible portions of the orbital arc by constraint set
(21). The remaining constraints (22) and (23) ensure the
nonnegativity of the continuous variables and the integrality of the
integer variables.

The analogous ALP formulation is:

Minimize z = xp+1 - X0 : (24)
Subject to
Xi=Xj-Pjjtnjj = ej-ej for all 1<i,j <m
BRI J where i<j (25)
piitnii » ASjj for a1l 1 <i,j <m
W where 1< (26)
Xp=Xj < ej for j=1,2,...,m (27)
Xr“+1 -Xj > ej for j=1,2’.‘.,m (28)
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Xj < Wj-ej for j=1,2,...,m (29)

xj ? 0 for j=0,1,...,m+1 (30)
Pijsnij > O for all 1 <i,j <m

where i<j (31)
pij*nij = 0 for all 1 <i,j <m

where i<j (32)

The objective function (24) is the same as that in the previous
model. The actual separations between all pairs of satellites are
determined in constraint set (25). Constraints of type (26) enforce
required minimum separations between all pairs of satellites.
Constraint sets (27) and (28) guarantee that xg and xu+p will differ
by at 1least as much as the greatest separation between any two
satellites. Feasible locations for the satellites are ensured by
constraints (29). Nonnegativity and complementarity restrictions on
the decision variables are enforced by constraints (30), (31), and
(32).

For a synthesis problem with m satellites, the MIP would have
m2+2m constraints, m+2 continuous variables, and m(m-1)/2 discrete
variables. There would be mZ+2m constraints and m2+2 variables in the

ALP.
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These new models may be solved via the same methods as the models
presented earlier. The large number of discrete-valued variables in
the MIP means that finding a solution will require a lengthy effort.
The ALP 1is expected to require less computing time, but there is no

guarantee that a global optimal solution will be found.

OTHER POSSIBLE FORMULATIONS

Our primary purpose in this report is to suggest alternative
formulations of satellite system synthesis problems. Thus far, two
different objective functions have been considered in our
formulations. These objectives do not constitute an exhaustive list
of reasonable objectives. Given a set of minimum satellite
separations that ensure satisfactory protection from interference, a
variety of additional MIP's and ALP's might be formulated.

Some examples of additional objectives that can be wused along
with the minimum satellite separation concept in mathematical

programming formulations of satellite synthesis problems are:

1. Minimization of a weighted sum of the deviations of
assigned satellite locations from corresponding pre-
assigned desired locations.

2. Minimization of the largest deviation of any

satellite's assigned location from its desired Tlocation.
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3. Maximization of the smallest separation between any

pair of adjacent satellites.

4, Minimization of a weighted combination of arc length

and absolute deviations between the satellites'
desired and assigned locations.

5. Maximization of the minimum amount, among all satellite

pairs, by which an actual separation exceeds the
minimum required separation.

The synthesis solutions found for some of these objectives may
exhibit special desirable properties. For example, it is expected
that objectives (2), (3), and (5) would force the performance measures
for the individual satellites, for example, the deviation of an
assigned 1location from the corresponding desired location for
additional objective 2, to have similar values, with no regard for the
total of the satellites' performance measures. An optimal solution
would then be about equally attractive for all administrations. Thus,
no administration would be penalized in a disproportionate manner by

implementation of the solution found.

SOLUTIONS TO TEST PROBLEMS

In this section, we present the solutions obtained for four

synthesis test problems, using the MIP and ALP formulations with the
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objective of positioning the satellites as near as possible to desired
locations. Six South American administrations - Argentina (ARG),
Bolivia (BOL), Chile (CHL), Paraguay (PRG), Peru (PRU), and Uruguay
(URG) - each with one satellite, are included in the first three test
problems. A single-entry protection ratio of 30 dB is assumed, with
the intent of achieving aggregate C/I ratios of at least 25 dB. These
test problems and solutions are the same as those presented by Levis,
Wang, et al. [10]. However, our MIP formulation is different than
the one used by Levis, Wang, et al. We have fewer continuous
variables and constraints in our MIP formulation. The solution times
we report for our MIP formulation are therefore more favorable. The
MIP problems were solved with a branch-and-bound code; the simplex
method with RBE was used to solve the ALP problems. All computer runs
were made on an IBM 3081-D computer at The Ohio State University.

The minimum satellite separations used for the first three test
problems are displayed in Table 1. All matrix entries are in degrees

of orbital arc.

Table 1. Minimum Satellite Separations
BOL CHL PRG PRU URG
ARG 4.17 4,19 4,32 1.41 4.14

BOL 4,57 4,04 4,26 0.94
CHL 2,00 3.94 1.59
PRG 1.10 2.46
PRU 0.37
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We assume that all six satellites can occupy any location between
800W and 1109W. Target Tlocations, the MIP solution, and the ALP
solution for three versions of this test problem are summarized below
in Tables 2, 3, and 4. All entries in these tables are in degrees

west longitude.

Table 2. Solutions to Test Problem 1

Satellite Locations

Satellite Desired MIP ALP
ARG 95.0 88.68 105.74
BOL 95.0 99.57 101.57
CHL 95.0 95.00 97.00
PRG 95,0 93.00 95.00
PRU 95.0 91.06 93.06
URG 95.0 96.59 92.54

0bj. fn.
value 18.42 23.71
CPU sec. 4,01 1.31
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Table 3. Solutions to Test Problem 2

Satellite Desired
ARG 110.0
BOL 110.0
CHL 110.0
PRG 110.0
PRU 110.0
URG 110.0

Obj. fn.
value
CPU sec.

Satellite Locations

MIP
101.35

97.18
105,54
107.54
109.63
110.00

28.76

3.24

ALP
110.00
104.33

99.76

97.76
108.59
105.86

33.69

1.30

Table 4. Solutions to Test Problem 3

Satellite Desired
ARG 87.5
BOL 92.5
CHL 97.5
PRG 87.5
PRU 102.5
URG 82.5

Obj. fn.
value
CPU sec.

25

MIP

88.76
92.93
97.50
84,44

102.50

81.98

5.27
0.69

Satellite Locations

ALP
101.26
92.50
97.07
87.50
102.67
82.50

14.36
1.25




Six diffe;ent synthesis solutions were found. The MIP model
produced better solutions than the ALP model, as measured by objective
function values. All six synthesis solutions found keep interference
at an aceeptable level. \Levis, Wang, et al. [10] report that the
aggregate co-channel C/I ratios computed at 54 test points located on
the perimeters of the six administrations are all above 27 dB for all
six solutions fouﬁd. This satisfies the goal that the aggregate C/I
ratios for all channels combined should be 25 dB or more. It appears,
then, that these satellite separations have indeed served their
purpose.

The solution times for the six examples solved are not excessive.
We find that there are almost no differences in the times required to
solve the ALP examples. Solution times for the MIP examples exhibit
much more variability. As larger synthesis problems are solved, the
solution times for both models will increase. Mixed integer
progamming solution times are likely to grow much faster and vary much
more than those for the almost linear programs.

A second test problem, with 13 satellites serving South American
administrations, has “also been solved using the mixed integer and
almost linear programming formulations and the corresponding solution
techniques. For this test problem, a contrived, but geographically
consistent, matrix of required minimum separation values was
constructed. The purpose was not to develop a practical scenario for

these administrations, but to examine the growth in solution time and
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the behavior of the objective function as the number of satellites is
increased. The feasible arc for each satellite was assumed to be 600W
to 1009W. A single-entry co-channel protection ratio of 30 dB was
used for this test problem. The desired 1locations and solutions
found, in degrees west longitude, are summarized in Table 5.

Solution times for both approaches are greater for this test
problem. This result is expected as the number of satellites has been
increased. The increase in solution time for the MIP model is
substantially greater than that for the ALP model, as expected.
However, the objective function value for the MIP solution is
significantly more attractive than that for the ALP solution. It is
hoped that discrepancies as large as this one will be atypical,

especially for problems with many satellites.
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Table 5. Thirteen Satellite Test Problem and Solutions

Desired MIP ALP
Service Area Location Solution Solution
Brazil-1 60.00 60.00 60.00
Surinam/
Fr. Guiana 65.00 65.00 64.62
Guyana 67.50 69.07 68.69
Paraguay 67.50 65.04 68.64
Uruguay 67.50 67.50 66.18
Argentina 70.00 71.64 87.38
Brazil-2 75.00 80.42 73.20
Venezuela 75.00 75.00 77.62
Bolivia 77.50 75.81 83.21
Chile 85.00 85,00 91.57
Colombia 85.00 84,58 91.15
Peru 87.50 88.94 78.95
Ecuador 90.00 92.95 86.87
Obj. fn.
value 17.59 55.94
CPU sec. 34,17 8.40
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CONCLUSIONS

The literature shows that there are many reasonable formulations
of satellite system synthesis problems. A variety of objectives have
been used. Some formulations may be preferable to others for
computational reasons, or because a particular formulation optimizes a
particular objective or combination of objectives.

A11 of the formulations we have suggested here are made possible
by applying a minimum satellite separation concept. They enforce
single-entry interference objectives while attempting to find a
synthesis solution which optimizes an additional criterion.
Cumbersome nonlinear expressions for interference relationships are
avoided in the optimization. Rather, we use a set of constants that
facilitate the use of linear functions of decision variables in our
formulations. These constants are minimum pairwise satellite spacings
that enforce the interference requirements. In the approach adopted
here for numerical examples, the constants are pre-calculated from
single-entry interference constraints; this is more efficient
computationally than the repeated interference calculations made in
nonlinear programming approaches [7,9,15].

As part of our ongoing research effort, we intend to investigate
the performance of the branch-and-bound method and the simplex method
with RBE on the formulations we have recommended here for larger
synthesis examples. We also hope to characterize the solutions

obtainable with different objectives.
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